Рассчитать высоту треугольника со сторонами 113, 107 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 107 + 47}{2}} \normalsize = 133.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133.5(133.5-113)(133.5-107)(133.5-47)}}{107}\normalsize = 46.8160504}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133.5(133.5-113)(133.5-107)(133.5-47)}}{113}\normalsize = 44.3302424}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133.5(133.5-113)(133.5-107)(133.5-47)}}{47}\normalsize = 106.581221}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 107 и 47 равна 46.8160504
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 107 и 47 равна 44.3302424
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 107 и 47 равна 106.581221
Ссылка на результат
?n1=113&n2=107&n3=47
Найти высоту треугольника со сторонами 125, 122 и 97
Найти высоту треугольника со сторонами 126, 95 и 69
Найти высоту треугольника со сторонами 71, 54 и 54
Найти высоту треугольника со сторонами 138, 113 и 28
Найти высоту треугольника со сторонами 116, 94 и 86
Найти высоту треугольника со сторонами 138, 123 и 83
Найти высоту треугольника со сторонами 126, 95 и 69
Найти высоту треугольника со сторонами 71, 54 и 54
Найти высоту треугольника со сторонами 138, 113 и 28
Найти высоту треугольника со сторонами 116, 94 и 86
Найти высоту треугольника со сторонами 138, 123 и 83