Рассчитать высоту треугольника со сторонами 113, 107 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 107 + 79}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-113)(149.5-107)(149.5-79)}}{107}\normalsize = 75.5791964}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-113)(149.5-107)(149.5-79)}}{113}\normalsize = 71.5661417}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-113)(149.5-107)(149.5-79)}}{79}\normalsize = 102.36676}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 107 и 79 равна 75.5791964
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 107 и 79 равна 71.5661417
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 107 и 79 равна 102.36676
Ссылка на результат
?n1=113&n2=107&n3=79
Найти высоту треугольника со сторонами 135, 123 и 50
Найти высоту треугольника со сторонами 47, 42 и 6
Найти высоту треугольника со сторонами 143, 138 и 71
Найти высоту треугольника со сторонами 85, 69 и 56
Найти высоту треугольника со сторонами 91, 87 и 52
Найти высоту треугольника со сторонами 101, 73 и 60
Найти высоту треугольника со сторонами 47, 42 и 6
Найти высоту треугольника со сторонами 143, 138 и 71
Найти высоту треугольника со сторонами 85, 69 и 56
Найти высоту треугольника со сторонами 91, 87 и 52
Найти высоту треугольника со сторонами 101, 73 и 60