Рассчитать высоту треугольника со сторонами 113, 107 и 91
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 107 + 91}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-113)(155.5-107)(155.5-91)}}{107}\normalsize = 84.9878037}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-113)(155.5-107)(155.5-91)}}{113}\normalsize = 80.475177}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-113)(155.5-107)(155.5-91)}}{91}\normalsize = 99.9307143}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 107 и 91 равна 84.9878037
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 107 и 91 равна 80.475177
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 107 и 91 равна 99.9307143
Ссылка на результат
?n1=113&n2=107&n3=91
Найти высоту треугольника со сторонами 125, 123 и 37
Найти высоту треугольника со сторонами 102, 87 и 37
Найти высоту треугольника со сторонами 143, 136 и 66
Найти высоту треугольника со сторонами 136, 86 и 54
Найти высоту треугольника со сторонами 86, 82 и 37
Найти высоту треугольника со сторонами 144, 139 и 22
Найти высоту треугольника со сторонами 102, 87 и 37
Найти высоту треугольника со сторонами 143, 136 и 66
Найти высоту треугольника со сторонами 136, 86 и 54
Найти высоту треугольника со сторонами 86, 82 и 37
Найти высоту треугольника со сторонами 144, 139 и 22