Рассчитать высоту треугольника со сторонами 113, 110 и 109
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 110 + 109}{2}} \normalsize = 166}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166(166-113)(166-110)(166-109)}}{110}\normalsize = 96.3519993}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166(166-113)(166-110)(166-109)}}{113}\normalsize = 93.7939816}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166(166-113)(166-110)(166-109)}}{109}\normalsize = 97.2359626}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 110 и 109 равна 96.3519993
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 110 и 109 равна 93.7939816
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 110 и 109 равна 97.2359626
Ссылка на результат
?n1=113&n2=110&n3=109
Найти высоту треугольника со сторонами 109, 91 и 74
Найти высоту треугольника со сторонами 91, 65 и 56
Найти высоту треугольника со сторонами 106, 68 и 60
Найти высоту треугольника со сторонами 148, 124 и 79
Найти высоту треугольника со сторонами 70, 65 и 56
Найти высоту треугольника со сторонами 76, 42 и 37
Найти высоту треугольника со сторонами 91, 65 и 56
Найти высоту треугольника со сторонами 106, 68 и 60
Найти высоту треугольника со сторонами 148, 124 и 79
Найти высоту треугольника со сторонами 70, 65 и 56
Найти высоту треугольника со сторонами 76, 42 и 37