Рассчитать высоту треугольника со сторонами 113, 110 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 110 + 23}{2}} \normalsize = 123}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123(123-113)(123-110)(123-23)}}{110}\normalsize = 22.9911949}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123(123-113)(123-110)(123-23)}}{113}\normalsize = 22.3808092}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123(123-113)(123-110)(123-23)}}{23}\normalsize = 109.957888}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 110 и 23 равна 22.9911949
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 110 и 23 равна 22.3808092
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 110 и 23 равна 109.957888
Ссылка на результат
?n1=113&n2=110&n3=23
Найти высоту треугольника со сторонами 77, 64 и 49
Найти высоту треугольника со сторонами 141, 130 и 78
Найти высоту треугольника со сторонами 90, 82 и 46
Найти высоту треугольника со сторонами 146, 118 и 89
Найти высоту треугольника со сторонами 80, 66 и 34
Найти высоту треугольника со сторонами 57, 32 и 31
Найти высоту треугольника со сторонами 141, 130 и 78
Найти высоту треугольника со сторонами 90, 82 и 46
Найти высоту треугольника со сторонами 146, 118 и 89
Найти высоту треугольника со сторонами 80, 66 и 34
Найти высоту треугольника со сторонами 57, 32 и 31