Рассчитать высоту треугольника со сторонами 113, 110 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 110 + 66}{2}} \normalsize = 144.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144.5(144.5-113)(144.5-110)(144.5-66)}}{110}\normalsize = 63.8367674}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144.5(144.5-113)(144.5-110)(144.5-66)}}{113}\normalsize = 62.141986}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144.5(144.5-113)(144.5-110)(144.5-66)}}{66}\normalsize = 106.394612}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 110 и 66 равна 63.8367674
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 110 и 66 равна 62.141986
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 110 и 66 равна 106.394612
Ссылка на результат
?n1=113&n2=110&n3=66
Найти высоту треугольника со сторонами 119, 108 и 77
Найти высоту треугольника со сторонами 141, 131 и 75
Найти высоту треугольника со сторонами 130, 127 и 33
Найти высоту треугольника со сторонами 85, 47 и 47
Найти высоту треугольника со сторонами 101, 86 и 68
Найти высоту треугольника со сторонами 131, 124 и 60
Найти высоту треугольника со сторонами 141, 131 и 75
Найти высоту треугольника со сторонами 130, 127 и 33
Найти высоту треугольника со сторонами 85, 47 и 47
Найти высоту треугольника со сторонами 101, 86 и 68
Найти высоту треугольника со сторонами 131, 124 и 60