Рассчитать высоту треугольника со сторонами 113, 112 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 112 + 44}{2}} \normalsize = 134.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134.5(134.5-113)(134.5-112)(134.5-44)}}{112}\normalsize = 43.3319161}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134.5(134.5-113)(134.5-112)(134.5-44)}}{113}\normalsize = 42.9484478}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134.5(134.5-113)(134.5-112)(134.5-44)}}{44}\normalsize = 110.299423}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 112 и 44 равна 43.3319161
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 112 и 44 равна 42.9484478
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 112 и 44 равна 110.299423
Ссылка на результат
?n1=113&n2=112&n3=44
Найти высоту треугольника со сторонами 148, 99 и 53
Найти высоту треугольника со сторонами 12, 12 и 3
Найти высоту треугольника со сторонами 129, 109 и 97
Найти высоту треугольника со сторонами 68, 64 и 41
Найти высоту треугольника со сторонами 131, 107 и 70
Найти высоту треугольника со сторонами 59, 54 и 27
Найти высоту треугольника со сторонами 12, 12 и 3
Найти высоту треугольника со сторонами 129, 109 и 97
Найти высоту треугольника со сторонами 68, 64 и 41
Найти высоту треугольника со сторонами 131, 107 и 70
Найти высоту треугольника со сторонами 59, 54 и 27