Рассчитать высоту треугольника со сторонами 113, 66 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 66 + 59}{2}} \normalsize = 119}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119(119-113)(119-66)(119-59)}}{66}\normalsize = 45.6613477}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119(119-113)(119-66)(119-59)}}{113}\normalsize = 26.6694597}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119(119-113)(119-66)(119-59)}}{59}\normalsize = 51.0787958}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 66 и 59 равна 45.6613477
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 66 и 59 равна 26.6694597
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 66 и 59 равна 51.0787958
Ссылка на результат
?n1=113&n2=66&n3=59
Найти высоту треугольника со сторонами 80, 54 и 47
Найти высоту треугольника со сторонами 55, 53 и 5
Найти высоту треугольника со сторонами 102, 87 и 65
Найти высоту треугольника со сторонами 118, 80 и 42
Найти высоту треугольника со сторонами 55, 49 и 19
Найти высоту треугольника со сторонами 126, 108 и 24
Найти высоту треугольника со сторонами 55, 53 и 5
Найти высоту треугольника со сторонами 102, 87 и 65
Найти высоту треугольника со сторонами 118, 80 и 42
Найти высоту треугольника со сторонами 55, 49 и 19
Найти высоту треугольника со сторонами 126, 108 и 24