Рассчитать высоту треугольника со сторонами 113, 68 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 68 + 57}{2}} \normalsize = 119}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119(119-113)(119-68)(119-57)}}{68}\normalsize = 44.1927596}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119(119-113)(119-68)(119-57)}}{113}\normalsize = 26.593873}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119(119-113)(119-68)(119-57)}}{57}\normalsize = 52.7211869}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 68 и 57 равна 44.1927596
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 68 и 57 равна 26.593873
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 68 и 57 равна 52.7211869
Ссылка на результат
?n1=113&n2=68&n3=57
Найти высоту треугольника со сторонами 146, 114 и 74
Найти высоту треугольника со сторонами 16, 15 и 10
Найти высоту треугольника со сторонами 142, 130 и 24
Найти высоту треугольника со сторонами 113, 105 и 28
Найти высоту треугольника со сторонами 83, 74 и 56
Найти высоту треугольника со сторонами 74, 51 и 24
Найти высоту треугольника со сторонами 16, 15 и 10
Найти высоту треугольника со сторонами 142, 130 и 24
Найти высоту треугольника со сторонами 113, 105 и 28
Найти высоту треугольника со сторонами 83, 74 и 56
Найти высоту треугольника со сторонами 74, 51 и 24