Рассчитать высоту треугольника со сторонами 113, 69 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 69 + 54}{2}} \normalsize = 118}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118(118-113)(118-69)(118-54)}}{69}\normalsize = 39.4271094}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118(118-113)(118-69)(118-54)}}{113}\normalsize = 24.0749606}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118(118-113)(118-69)(118-54)}}{54}\normalsize = 50.3790842}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 69 и 54 равна 39.4271094
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 69 и 54 равна 24.0749606
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 69 и 54 равна 50.3790842
Ссылка на результат
?n1=113&n2=69&n3=54
Найти высоту треугольника со сторонами 109, 90 и 67
Найти высоту треугольника со сторонами 91, 80 и 49
Найти высоту треугольника со сторонами 122, 93 и 82
Найти высоту треугольника со сторонами 104, 64 и 60
Найти высоту треугольника со сторонами 130, 103 и 97
Найти высоту треугольника со сторонами 138, 122 и 44
Найти высоту треугольника со сторонами 91, 80 и 49
Найти высоту треугольника со сторонами 122, 93 и 82
Найти высоту треугольника со сторонами 104, 64 и 60
Найти высоту треугольника со сторонами 130, 103 и 97
Найти высоту треугольника со сторонами 138, 122 и 44