Рассчитать высоту треугольника со сторонами 113, 74 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 74 + 50}{2}} \normalsize = 118.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118.5(118.5-113)(118.5-74)(118.5-50)}}{74}\normalsize = 38.0946587}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118.5(118.5-113)(118.5-74)(118.5-50)}}{113}\normalsize = 24.9469446}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118.5(118.5-113)(118.5-74)(118.5-50)}}{50}\normalsize = 56.3800949}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 74 и 50 равна 38.0946587
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 74 и 50 равна 24.9469446
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 74 и 50 равна 56.3800949
Ссылка на результат
?n1=113&n2=74&n3=50
Найти высоту треугольника со сторонами 135, 133 и 74
Найти высоту треугольника со сторонами 129, 129 и 70
Найти высоту треугольника со сторонами 140, 109 и 106
Найти высоту треугольника со сторонами 85, 70 и 44
Найти высоту треугольника со сторонами 126, 126 и 9
Найти высоту треугольника со сторонами 132, 82 и 78
Найти высоту треугольника со сторонами 129, 129 и 70
Найти высоту треугольника со сторонами 140, 109 и 106
Найти высоту треугольника со сторонами 85, 70 и 44
Найти высоту треугольника со сторонами 126, 126 и 9
Найти высоту треугольника со сторонами 132, 82 и 78