Рассчитать высоту треугольника со сторонами 113, 84 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 84 + 39}{2}} \normalsize = 118}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118(118-113)(118-84)(118-39)}}{84}\normalsize = 29.9729659}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118(118-113)(118-84)(118-39)}}{113}\normalsize = 22.2807888}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118(118-113)(118-84)(118-39)}}{39}\normalsize = 64.5571573}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 84 и 39 равна 29.9729659
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 84 и 39 равна 22.2807888
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 84 и 39 равна 64.5571573
Ссылка на результат
?n1=113&n2=84&n3=39
Найти высоту треугольника со сторонами 145, 109 и 71
Найти высоту треугольника со сторонами 127, 109 и 65
Найти высоту треугольника со сторонами 124, 117 и 24
Найти высоту треугольника со сторонами 116, 86 и 63
Найти высоту треугольника со сторонами 69, 46 и 25
Найти высоту треугольника со сторонами 137, 91 и 84
Найти высоту треугольника со сторонами 127, 109 и 65
Найти высоту треугольника со сторонами 124, 117 и 24
Найти высоту треугольника со сторонами 116, 86 и 63
Найти высоту треугольника со сторонами 69, 46 и 25
Найти высоту треугольника со сторонами 137, 91 и 84