Рассчитать высоту треугольника со сторонами 113, 85 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 85 + 54}{2}} \normalsize = 126}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126(126-113)(126-85)(126-54)}}{85}\normalsize = 51.7399727}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126(126-113)(126-85)(126-54)}}{113}\normalsize = 38.9194485}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126(126-113)(126-85)(126-54)}}{54}\normalsize = 81.4425496}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 85 и 54 равна 51.7399727
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 85 и 54 равна 38.9194485
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 85 и 54 равна 81.4425496
Ссылка на результат
?n1=113&n2=85&n3=54
Найти высоту треугольника со сторонами 50, 35 и 25
Найти высоту треугольника со сторонами 140, 83 и 63
Найти высоту треугольника со сторонами 136, 97 и 58
Найти высоту треугольника со сторонами 146, 139 и 108
Найти высоту треугольника со сторонами 144, 139 и 40
Найти высоту треугольника со сторонами 125, 106 и 49
Найти высоту треугольника со сторонами 140, 83 и 63
Найти высоту треугольника со сторонами 136, 97 и 58
Найти высоту треугольника со сторонами 146, 139 и 108
Найти высоту треугольника со сторонами 144, 139 и 40
Найти высоту треугольника со сторонами 125, 106 и 49