Рассчитать высоту треугольника со сторонами 113, 86 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 86 + 60}{2}} \normalsize = 129.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129.5(129.5-113)(129.5-86)(129.5-60)}}{86}\normalsize = 59.1078866}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129.5(129.5-113)(129.5-86)(129.5-60)}}{113}\normalsize = 44.9847633}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129.5(129.5-113)(129.5-86)(129.5-60)}}{60}\normalsize = 84.7213041}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 86 и 60 равна 59.1078866
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 86 и 60 равна 44.9847633
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 86 и 60 равна 84.7213041
Ссылка на результат
?n1=113&n2=86&n3=60
Найти высоту треугольника со сторонами 145, 141 и 92
Найти высоту треугольника со сторонами 133, 125 и 37
Найти высоту треугольника со сторонами 140, 113 и 94
Найти высоту треугольника со сторонами 99, 89 и 52
Найти высоту треугольника со сторонами 112, 110 и 65
Найти высоту треугольника со сторонами 141, 118 и 70
Найти высоту треугольника со сторонами 133, 125 и 37
Найти высоту треугольника со сторонами 140, 113 и 94
Найти высоту треугольника со сторонами 99, 89 и 52
Найти высоту треугольника со сторонами 112, 110 и 65
Найти высоту треугольника со сторонами 141, 118 и 70