Рассчитать высоту треугольника со сторонами 113, 87 и 76
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 87 + 76}{2}} \normalsize = 138}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138(138-113)(138-87)(138-76)}}{87}\normalsize = 75.9278711}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138(138-113)(138-87)(138-76)}}{113}\normalsize = 58.4577415}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138(138-113)(138-87)(138-76)}}{76}\normalsize = 86.9174314}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 87 и 76 равна 75.9278711
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 87 и 76 равна 58.4577415
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 87 и 76 равна 86.9174314
Ссылка на результат
?n1=113&n2=87&n3=76
Найти высоту треугольника со сторонами 62, 44 и 29
Найти высоту треугольника со сторонами 139, 139 и 17
Найти высоту треугольника со сторонами 72, 70 и 63
Найти высоту треугольника со сторонами 105, 99 и 47
Найти высоту треугольника со сторонами 69, 65 и 5
Найти высоту треугольника со сторонами 71, 65 и 21
Найти высоту треугольника со сторонами 139, 139 и 17
Найти высоту треугольника со сторонами 72, 70 и 63
Найти высоту треугольника со сторонами 105, 99 и 47
Найти высоту треугольника со сторонами 69, 65 и 5
Найти высоту треугольника со сторонами 71, 65 и 21