Рассчитать высоту треугольника со сторонами 113, 88 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 88 + 51}{2}} \normalsize = 126}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126(126-113)(126-88)(126-51)}}{88}\normalsize = 49.1051116}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126(126-113)(126-88)(126-51)}}{113}\normalsize = 38.2411488}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126(126-113)(126-88)(126-51)}}{51}\normalsize = 84.7303886}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 88 и 51 равна 49.1051116
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 88 и 51 равна 38.2411488
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 88 и 51 равна 84.7303886
Ссылка на результат
?n1=113&n2=88&n3=51
Найти высоту треугольника со сторонами 133, 98 и 72
Найти высоту треугольника со сторонами 149, 88 и 88
Найти высоту треугольника со сторонами 102, 66 и 39
Найти высоту треугольника со сторонами 87, 67 и 67
Найти высоту треугольника со сторонами 146, 115 и 76
Найти высоту треугольника со сторонами 143, 115 и 55
Найти высоту треугольника со сторонами 149, 88 и 88
Найти высоту треугольника со сторонами 102, 66 и 39
Найти высоту треугольника со сторонами 87, 67 и 67
Найти высоту треугольника со сторонами 146, 115 и 76
Найти высоту треугольника со сторонами 143, 115 и 55