Рассчитать высоту треугольника со сторонами 113, 93 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 93 + 59}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-113)(132.5-93)(132.5-59)}}{93}\normalsize = 58.8998935}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-113)(132.5-93)(132.5-59)}}{113}\normalsize = 48.4751336}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-113)(132.5-93)(132.5-59)}}{59}\normalsize = 92.842205}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 93 и 59 равна 58.8998935
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 93 и 59 равна 48.4751336
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 93 и 59 равна 92.842205
Ссылка на результат
?n1=113&n2=93&n3=59
Найти высоту треугольника со сторонами 142, 110 и 97
Найти высоту треугольника со сторонами 50, 38 и 22
Найти высоту треугольника со сторонами 125, 123 и 59
Найти высоту треугольника со сторонами 100, 96 и 47
Найти высоту треугольника со сторонами 114, 112 и 43
Найти высоту треугольника со сторонами 130, 72 и 70
Найти высоту треугольника со сторонами 50, 38 и 22
Найти высоту треугольника со сторонами 125, 123 и 59
Найти высоту треугольника со сторонами 100, 96 и 47
Найти высоту треугольника со сторонами 114, 112 и 43
Найти высоту треугольника со сторонами 130, 72 и 70