Рассчитать высоту треугольника со сторонами 113, 96 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 96 + 57}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-113)(133-96)(133-57)}}{96}\normalsize = 56.978005}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-113)(133-96)(133-57)}}{113}\normalsize = 48.4060928}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-113)(133-96)(133-57)}}{57}\normalsize = 95.9629558}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 96 и 57 равна 56.978005
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 96 и 57 равна 48.4060928
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 96 и 57 равна 95.9629558
Ссылка на результат
?n1=113&n2=96&n3=57
Найти высоту треугольника со сторонами 25, 22 и 10
Найти высоту треугольника со сторонами 142, 121 и 113
Найти высоту треугольника со сторонами 141, 103 и 55
Найти высоту треугольника со сторонами 108, 87 и 85
Найти высоту треугольника со сторонами 139, 84 и 68
Найти высоту треугольника со сторонами 58, 54 и 40
Найти высоту треугольника со сторонами 142, 121 и 113
Найти высоту треугольника со сторонами 141, 103 и 55
Найти высоту треугольника со сторонами 108, 87 и 85
Найти высоту треугольника со сторонами 139, 84 и 68
Найти высоту треугольника со сторонами 58, 54 и 40