Рассчитать высоту треугольника со сторонами 113, 98 и 28
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 98 + 28}{2}} \normalsize = 119.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119.5(119.5-113)(119.5-98)(119.5-28)}}{98}\normalsize = 25.2275066}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119.5(119.5-113)(119.5-98)(119.5-28)}}{113}\normalsize = 21.8787225}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119.5(119.5-113)(119.5-98)(119.5-28)}}{28}\normalsize = 88.296273}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 98 и 28 равна 25.2275066
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 98 и 28 равна 21.8787225
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 98 и 28 равна 88.296273
Ссылка на результат
?n1=113&n2=98&n3=28
Найти высоту треугольника со сторонами 133, 120 и 102
Найти высоту треугольника со сторонами 135, 115 и 111
Найти высоту треугольника со сторонами 66, 57 и 25
Найти высоту треугольника со сторонами 146, 105 и 80
Найти высоту треугольника со сторонами 53, 52 и 23
Найти высоту треугольника со сторонами 104, 99 и 65
Найти высоту треугольника со сторонами 135, 115 и 111
Найти высоту треугольника со сторонами 66, 57 и 25
Найти высоту треугольника со сторонами 146, 105 и 80
Найти высоту треугольника со сторонами 53, 52 и 23
Найти высоту треугольника со сторонами 104, 99 и 65