Рассчитать высоту треугольника со сторонами 113, 98 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 98 + 34}{2}} \normalsize = 122.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122.5(122.5-113)(122.5-98)(122.5-34)}}{98}\normalsize = 32.4181662}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122.5(122.5-113)(122.5-98)(122.5-34)}}{113}\normalsize = 28.1148698}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122.5(122.5-113)(122.5-98)(122.5-34)}}{34}\normalsize = 93.4405967}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 98 и 34 равна 32.4181662
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 98 и 34 равна 28.1148698
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 98 и 34 равна 93.4405967
Ссылка на результат
?n1=113&n2=98&n3=34
Найти высоту треугольника со сторонами 115, 89 и 33
Найти высоту треугольника со сторонами 144, 89 и 88
Найти высоту треугольника со сторонами 73, 47 и 38
Найти высоту треугольника со сторонами 48, 40 и 12
Найти высоту треугольника со сторонами 81, 77 и 22
Найти высоту треугольника со сторонами 137, 104 и 82
Найти высоту треугольника со сторонами 144, 89 и 88
Найти высоту треугольника со сторонами 73, 47 и 38
Найти высоту треугольника со сторонами 48, 40 и 12
Найти высоту треугольника со сторонами 81, 77 и 22
Найти высоту треугольника со сторонами 137, 104 и 82