Рассчитать высоту треугольника со сторонами 113, 99 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{113 + 99 + 30}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-113)(121-99)(121-30)}}{99}\normalsize = 28.1231858}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-113)(121-99)(121-30)}}{113}\normalsize = 24.6388973}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-113)(121-99)(121-30)}}{30}\normalsize = 92.8065132}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 113, 99 и 30 равна 28.1231858
Высота треугольника опущенная с вершины A на сторону BC со сторонами 113, 99 и 30 равна 24.6388973
Высота треугольника опущенная с вершины C на сторону AB со сторонами 113, 99 и 30 равна 92.8065132
Ссылка на результат
?n1=113&n2=99&n3=30
Найти высоту треугольника со сторонами 55, 41 и 35
Найти высоту треугольника со сторонами 144, 97 и 79
Найти высоту треугольника со сторонами 130, 116 и 17
Найти высоту треугольника со сторонами 78, 77 и 33
Найти высоту треугольника со сторонами 109, 105 и 53
Найти высоту треугольника со сторонами 109, 67 и 49
Найти высоту треугольника со сторонами 144, 97 и 79
Найти высоту треугольника со сторонами 130, 116 и 17
Найти высоту треугольника со сторонами 78, 77 и 33
Найти высоту треугольника со сторонами 109, 105 и 53
Найти высоту треугольника со сторонами 109, 67 и 49