Рассчитать высоту треугольника со сторонами 114, 102 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 102 + 26}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-114)(121-102)(121-26)}}{102}\normalsize = 24.244327}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-114)(121-102)(121-26)}}{114}\normalsize = 21.6922925}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-114)(121-102)(121-26)}}{26}\normalsize = 95.1123596}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 102 и 26 равна 24.244327
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 102 и 26 равна 21.6922925
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 102 и 26 равна 95.1123596
Ссылка на результат
?n1=114&n2=102&n3=26
Найти высоту треугольника со сторонами 97, 94 и 77
Найти высоту треугольника со сторонами 134, 111 и 26
Найти высоту треугольника со сторонами 86, 63 и 33
Найти высоту треугольника со сторонами 73, 67 и 45
Найти высоту треугольника со сторонами 134, 100 и 76
Найти высоту треугольника со сторонами 141, 103 и 89
Найти высоту треугольника со сторонами 134, 111 и 26
Найти высоту треугольника со сторонами 86, 63 и 33
Найти высоту треугольника со сторонами 73, 67 и 45
Найти высоту треугольника со сторонами 134, 100 и 76
Найти высоту треугольника со сторонами 141, 103 и 89