Рассчитать высоту треугольника со сторонами 114, 103 и 45

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 103 + 45}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-114)(131-103)(131-45)}}{103}\normalsize = 44.9656754}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-114)(131-103)(131-45)}}{114}\normalsize = 40.6268821}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-114)(131-103)(131-45)}}{45}\normalsize = 102.921435}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 103 и 45 равна 44.9656754
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 103 и 45 равна 40.6268821
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 103 и 45 равна 102.921435
Ссылка на результат
?n1=114&n2=103&n3=45