Рассчитать высоту треугольника со сторонами 114, 103 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 103 + 73}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-114)(145-103)(145-73)}}{103}\normalsize = 71.5893654}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-114)(145-103)(145-73)}}{114}\normalsize = 64.6816196}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-114)(145-103)(145-73)}}{73}\normalsize = 101.009652}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 103 и 73 равна 71.5893654
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 103 и 73 равна 64.6816196
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 103 и 73 равна 101.009652
Ссылка на результат
?n1=114&n2=103&n3=73
Найти высоту треугольника со сторонами 66, 52 и 45
Найти высоту треугольника со сторонами 111, 110 и 46
Найти высоту треугольника со сторонами 87, 69 и 46
Найти высоту треугольника со сторонами 114, 89 и 89
Найти высоту треугольника со сторонами 107, 61 и 59
Найти высоту треугольника со сторонами 137, 114 и 96
Найти высоту треугольника со сторонами 111, 110 и 46
Найти высоту треугольника со сторонами 87, 69 и 46
Найти высоту треугольника со сторонами 114, 89 и 89
Найти высоту треугольника со сторонами 107, 61 и 59
Найти высоту треугольника со сторонами 137, 114 и 96