Рассчитать высоту треугольника со сторонами 114, 105 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 105 + 93}{2}} \normalsize = 156}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156(156-114)(156-105)(156-93)}}{105}\normalsize = 87.394279}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156(156-114)(156-105)(156-93)}}{114}\normalsize = 80.4947306}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156(156-114)(156-105)(156-93)}}{93}\normalsize = 98.6709601}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 105 и 93 равна 87.394279
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 105 и 93 равна 80.4947306
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 105 и 93 равна 98.6709601
Ссылка на результат
?n1=114&n2=105&n3=93
Найти высоту треугольника со сторонами 143, 139 и 120
Найти высоту треугольника со сторонами 116, 94 и 45
Найти высоту треугольника со сторонами 146, 99 и 89
Найти высоту треугольника со сторонами 132, 99 и 64
Найти высоту треугольника со сторонами 33, 27 и 14
Найти высоту треугольника со сторонами 119, 118 и 40
Найти высоту треугольника со сторонами 116, 94 и 45
Найти высоту треугольника со сторонами 146, 99 и 89
Найти высоту треугольника со сторонами 132, 99 и 64
Найти высоту треугольника со сторонами 33, 27 и 14
Найти высоту треугольника со сторонами 119, 118 и 40