Рассчитать высоту треугольника со сторонами 114, 106 и 70

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 106 + 70}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-114)(145-106)(145-70)}}{106}\normalsize = 68.4150917}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-114)(145-106)(145-70)}}{114}\normalsize = 63.6140327}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-114)(145-106)(145-70)}}{70}\normalsize = 103.599996}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 106 и 70 равна 68.4150917
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 106 и 70 равна 63.6140327
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 106 и 70 равна 103.599996
Ссылка на результат
?n1=114&n2=106&n3=70