Рассчитать высоту треугольника со сторонами 114, 108 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 108 + 50}{2}} \normalsize = 136}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136(136-114)(136-108)(136-50)}}{108}\normalsize = 49.7067394}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136(136-114)(136-108)(136-50)}}{114}\normalsize = 47.0905953}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136(136-114)(136-108)(136-50)}}{50}\normalsize = 107.366557}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 108 и 50 равна 49.7067394
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 108 и 50 равна 47.0905953
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 108 и 50 равна 107.366557
Ссылка на результат
?n1=114&n2=108&n3=50
Найти высоту треугольника со сторонами 109, 97 и 79
Найти высоту треугольника со сторонами 125, 84 и 73
Найти высоту треугольника со сторонами 68, 57 и 49
Найти высоту треугольника со сторонами 105, 96 и 10
Найти высоту треугольника со сторонами 145, 93 и 87
Найти высоту треугольника со сторонами 57, 38 и 20
Найти высоту треугольника со сторонами 125, 84 и 73
Найти высоту треугольника со сторонами 68, 57 и 49
Найти высоту треугольника со сторонами 105, 96 и 10
Найти высоту треугольника со сторонами 145, 93 и 87
Найти высоту треугольника со сторонами 57, 38 и 20