Рассчитать высоту треугольника со сторонами 114, 109 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 109 + 56}{2}} \normalsize = 139.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139.5(139.5-114)(139.5-109)(139.5-56)}}{109}\normalsize = 55.2273048}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139.5(139.5-114)(139.5-109)(139.5-56)}}{114}\normalsize = 52.8050546}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139.5(139.5-114)(139.5-109)(139.5-56)}}{56}\normalsize = 107.496004}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 109 и 56 равна 55.2273048
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 109 и 56 равна 52.8050546
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 109 и 56 равна 107.496004
Ссылка на результат
?n1=114&n2=109&n3=56
Найти высоту треугольника со сторонами 109, 97 и 38
Найти высоту треугольника со сторонами 127, 127 и 11
Найти высоту треугольника со сторонами 112, 103 и 54
Найти высоту треугольника со сторонами 147, 99 и 80
Найти высоту треугольника со сторонами 137, 129 и 104
Найти высоту треугольника со сторонами 84, 49 и 43
Найти высоту треугольника со сторонами 127, 127 и 11
Найти высоту треугольника со сторонами 112, 103 и 54
Найти высоту треугольника со сторонами 147, 99 и 80
Найти высоту треугольника со сторонами 137, 129 и 104
Найти высоту треугольника со сторонами 84, 49 и 43