Рассчитать высоту треугольника со сторонами 114, 109 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 109 + 78}{2}} \normalsize = 150.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150.5(150.5-114)(150.5-109)(150.5-78)}}{109}\normalsize = 74.5952599}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150.5(150.5-114)(150.5-109)(150.5-78)}}{114}\normalsize = 71.323538}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150.5(150.5-114)(150.5-109)(150.5-78)}}{78}\normalsize = 104.242094}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 109 и 78 равна 74.5952599
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 109 и 78 равна 71.323538
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 109 и 78 равна 104.242094
Ссылка на результат
?n1=114&n2=109&n3=78
Найти высоту треугольника со сторонами 117, 83 и 45
Найти высоту треугольника со сторонами 150, 127 и 51
Найти высоту треугольника со сторонами 148, 137 и 115
Найти высоту треугольника со сторонами 105, 73 и 44
Найти высоту треугольника со сторонами 125, 102 и 29
Найти высоту треугольника со сторонами 47, 28 и 21
Найти высоту треугольника со сторонами 150, 127 и 51
Найти высоту треугольника со сторонами 148, 137 и 115
Найти высоту треугольника со сторонами 105, 73 и 44
Найти высоту треугольника со сторонами 125, 102 и 29
Найти высоту треугольника со сторонами 47, 28 и 21