Рассчитать высоту треугольника со сторонами 114, 110 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 110 + 12}{2}} \normalsize = 118}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118(118-114)(118-110)(118-12)}}{110}\normalsize = 11.5028706}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118(118-114)(118-110)(118-12)}}{114}\normalsize = 11.0992611}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118(118-114)(118-110)(118-12)}}{12}\normalsize = 105.442981}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 110 и 12 равна 11.5028706
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 110 и 12 равна 11.0992611
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 110 и 12 равна 105.442981
Ссылка на результат
?n1=114&n2=110&n3=12
Найти высоту треугольника со сторонами 127, 110 и 48
Найти высоту треугольника со сторонами 139, 115 и 54
Найти высоту треугольника со сторонами 105, 90 и 85
Найти высоту треугольника со сторонами 137, 103 и 76
Найти высоту треугольника со сторонами 134, 133 и 70
Найти высоту треугольника со сторонами 139, 87 и 57
Найти высоту треугольника со сторонами 139, 115 и 54
Найти высоту треугольника со сторонами 105, 90 и 85
Найти высоту треугольника со сторонами 137, 103 и 76
Найти высоту треугольника со сторонами 134, 133 и 70
Найти высоту треугольника со сторонами 139, 87 и 57