Рассчитать высоту треугольника со сторонами 114, 110 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 110 + 19}{2}} \normalsize = 121.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121.5(121.5-114)(121.5-110)(121.5-19)}}{110}\normalsize = 18.8437327}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121.5(121.5-114)(121.5-110)(121.5-19)}}{114}\normalsize = 18.1825491}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121.5(121.5-114)(121.5-110)(121.5-19)}}{19}\normalsize = 109.095294}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 110 и 19 равна 18.8437327
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 110 и 19 равна 18.1825491
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 110 и 19 равна 109.095294
Ссылка на результат
?n1=114&n2=110&n3=19
Найти высоту треугольника со сторонами 91, 67 и 36
Найти высоту треугольника со сторонами 150, 149 и 18
Найти высоту треугольника со сторонами 130, 121 и 96
Найти высоту треугольника со сторонами 137, 129 и 119
Найти высоту треугольника со сторонами 134, 127 и 103
Найти высоту треугольника со сторонами 132, 116 и 75
Найти высоту треугольника со сторонами 150, 149 и 18
Найти высоту треугольника со сторонами 130, 121 и 96
Найти высоту треугольника со сторонами 137, 129 и 119
Найти высоту треугольника со сторонами 134, 127 и 103
Найти высоту треугольника со сторонами 132, 116 и 75