Рассчитать высоту треугольника со сторонами 114, 110 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 110 + 30}{2}} \normalsize = 127}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127(127-114)(127-110)(127-30)}}{110}\normalsize = 29.9999945}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127(127-114)(127-110)(127-30)}}{114}\normalsize = 28.9473631}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127(127-114)(127-110)(127-30)}}{30}\normalsize = 109.99998}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 110 и 30 равна 29.9999945
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 110 и 30 равна 28.9473631
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 110 и 30 равна 109.99998
Ссылка на результат
?n1=114&n2=110&n3=30
Найти высоту треугольника со сторонами 93, 89 и 48
Найти высоту треугольника со сторонами 103, 75 и 70
Найти высоту треугольника со сторонами 77, 61 и 17
Найти высоту треугольника со сторонами 84, 79 и 38
Найти высоту треугольника со сторонами 88, 75 и 59
Найти высоту треугольника со сторонами 68, 65 и 27
Найти высоту треугольника со сторонами 103, 75 и 70
Найти высоту треугольника со сторонами 77, 61 и 17
Найти высоту треугольника со сторонами 84, 79 и 38
Найти высоту треугольника со сторонами 88, 75 и 59
Найти высоту треугольника со сторонами 68, 65 и 27