Рассчитать высоту треугольника со сторонами 114, 112 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 112 + 95}{2}} \normalsize = 160.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160.5(160.5-114)(160.5-112)(160.5-95)}}{112}\normalsize = 86.9495797}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160.5(160.5-114)(160.5-112)(160.5-95)}}{114}\normalsize = 85.4241485}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160.5(160.5-114)(160.5-112)(160.5-95)}}{95}\normalsize = 102.508978}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 112 и 95 равна 86.9495797
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 112 и 95 равна 85.4241485
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 112 и 95 равна 102.508978
Ссылка на результат
?n1=114&n2=112&n3=95
Найти высоту треугольника со сторонами 137, 125 и 113
Найти высоту треугольника со сторонами 141, 140 и 113
Найти высоту треугольника со сторонами 144, 120 и 83
Найти высоту треугольника со сторонами 96, 83 и 46
Найти высоту треугольника со сторонами 114, 67 и 67
Найти высоту треугольника со сторонами 137, 118 и 108
Найти высоту треугольника со сторонами 141, 140 и 113
Найти высоту треугольника со сторонами 144, 120 и 83
Найти высоту треугольника со сторонами 96, 83 и 46
Найти высоту треугольника со сторонами 114, 67 и 67
Найти высоту треугольника со сторонами 137, 118 и 108