Рассчитать высоту треугольника со сторонами 114, 74 и 56

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 74 + 56}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-114)(122-74)(122-56)}}{74}\normalsize = 47.5243047}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-114)(122-74)(122-56)}}{114}\normalsize = 30.84911}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-114)(122-74)(122-56)}}{56}\normalsize = 62.799974}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 74 и 56 равна 47.5243047
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 74 и 56 равна 30.84911
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 74 и 56 равна 62.799974
Ссылка на результат
?n1=114&n2=74&n3=56