Рассчитать высоту треугольника со сторонами 114, 78 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 78 + 43}{2}} \normalsize = 117.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117.5(117.5-114)(117.5-78)(117.5-43)}}{78}\normalsize = 28.2075283}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117.5(117.5-114)(117.5-78)(117.5-43)}}{114}\normalsize = 19.2998878}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117.5(117.5-114)(117.5-78)(117.5-43)}}{43}\normalsize = 51.1671444}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 78 и 43 равна 28.2075283
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 78 и 43 равна 19.2998878
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 78 и 43 равна 51.1671444
Ссылка на результат
?n1=114&n2=78&n3=43
Найти высоту треугольника со сторонами 82, 68 и 52
Найти высоту треугольника со сторонами 95, 63 и 57
Найти высоту треугольника со сторонами 110, 90 и 63
Найти высоту треугольника со сторонами 144, 110 и 110
Найти высоту треугольника со сторонами 127, 107 и 39
Найти высоту треугольника со сторонами 99, 79 и 43
Найти высоту треугольника со сторонами 95, 63 и 57
Найти высоту треугольника со сторонами 110, 90 и 63
Найти высоту треугольника со сторонами 144, 110 и 110
Найти высоту треугольника со сторонами 127, 107 и 39
Найти высоту треугольника со сторонами 99, 79 и 43