Рассчитать высоту треугольника со сторонами 114, 79 и 56

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 79 + 56}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-114)(124.5-79)(124.5-56)}}{79}\normalsize = 51.1014489}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-114)(124.5-79)(124.5-56)}}{114}\normalsize = 35.4124075}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-114)(124.5-79)(124.5-56)}}{56}\normalsize = 72.0895439}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 79 и 56 равна 51.1014489
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 79 и 56 равна 35.4124075
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 79 и 56 равна 72.0895439
Ссылка на результат
?n1=114&n2=79&n3=56