Рассчитать высоту треугольника со сторонами 114, 85 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 85 + 41}{2}} \normalsize = 120}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120(120-114)(120-85)(120-41)}}{85}\normalsize = 33.1989911}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120(120-114)(120-85)(120-41)}}{114}\normalsize = 24.7536337}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120(120-114)(120-85)(120-41)}}{41}\normalsize = 68.8271767}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 85 и 41 равна 33.1989911
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 85 и 41 равна 24.7536337
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 85 и 41 равна 68.8271767
Ссылка на результат
?n1=114&n2=85&n3=41
Найти высоту треугольника со сторонами 134, 89 и 63
Найти высоту треугольника со сторонами 145, 127 и 38
Найти высоту треугольника со сторонами 146, 127 и 103
Найти высоту треугольника со сторонами 118, 108 и 107
Найти высоту треугольника со сторонами 93, 93 и 40
Найти высоту треугольника со сторонами 74, 42 и 40
Найти высоту треугольника со сторонами 145, 127 и 38
Найти высоту треугольника со сторонами 146, 127 и 103
Найти высоту треугольника со сторонами 118, 108 и 107
Найти высоту треугольника со сторонами 93, 93 и 40
Найти высоту треугольника со сторонами 74, 42 и 40