Рассчитать высоту треугольника со сторонами 114, 90 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 90 + 30}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-114)(117-90)(117-30)}}{90}\normalsize = 20.1782061}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-114)(117-90)(117-30)}}{114}\normalsize = 15.9301627}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-114)(117-90)(117-30)}}{30}\normalsize = 60.5346182}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 90 и 30 равна 20.1782061
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 90 и 30 равна 15.9301627
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 90 и 30 равна 60.5346182
Ссылка на результат
?n1=114&n2=90&n3=30
Найти высоту треугольника со сторонами 93, 65 и 35
Найти высоту треугольника со сторонами 131, 121 и 84
Найти высоту треугольника со сторонами 99, 84 и 47
Найти высоту треугольника со сторонами 117, 107 и 12
Найти высоту треугольника со сторонами 148, 113 и 68
Найти высоту треугольника со сторонами 139, 106 и 87
Найти высоту треугольника со сторонами 131, 121 и 84
Найти высоту треугольника со сторонами 99, 84 и 47
Найти высоту треугольника со сторонами 117, 107 и 12
Найти высоту треугольника со сторонами 148, 113 и 68
Найти высоту треугольника со сторонами 139, 106 и 87