Рассчитать высоту треугольника со сторонами 114, 90 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 90 + 86}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-114)(145-90)(145-86)}}{90}\normalsize = 84.8710714}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-114)(145-90)(145-86)}}{114}\normalsize = 67.0034774}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-114)(145-90)(145-86)}}{86}\normalsize = 88.8185631}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 90 и 86 равна 84.8710714
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 90 и 86 равна 67.0034774
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 90 и 86 равна 88.8185631
Ссылка на результат
?n1=114&n2=90&n3=86
Найти высоту треугольника со сторонами 142, 127 и 35
Найти высоту треугольника со сторонами 122, 115 и 114
Найти высоту треугольника со сторонами 122, 102 и 62
Найти высоту треугольника со сторонами 116, 99 и 52
Найти высоту треугольника со сторонами 124, 107 и 57
Найти высоту треугольника со сторонами 123, 91 и 39
Найти высоту треугольника со сторонами 122, 115 и 114
Найти высоту треугольника со сторонами 122, 102 и 62
Найти высоту треугольника со сторонами 116, 99 и 52
Найти высоту треугольника со сторонами 124, 107 и 57
Найти высоту треугольника со сторонами 123, 91 и 39