Рассчитать высоту треугольника со сторонами 114, 91 и 47

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 91 + 47}{2}} \normalsize = 126}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126(126-114)(126-91)(126-47)}}{91}\normalsize = 44.9378269}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126(126-114)(126-91)(126-47)}}{114}\normalsize = 35.8714232}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126(126-114)(126-91)(126-47)}}{47}\normalsize = 87.0072818}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 91 и 47 равна 44.9378269
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 91 и 47 равна 35.8714232
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 91 и 47 равна 87.0072818
Ссылка на результат
?n1=114&n2=91&n3=47