Рассчитать высоту треугольника со сторонами 114, 96 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 96 + 46}{2}} \normalsize = 128}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128(128-114)(128-96)(128-46)}}{96}\normalsize = 45.1761983}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128(128-114)(128-96)(128-46)}}{114}\normalsize = 38.0431143}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128(128-114)(128-96)(128-46)}}{46}\normalsize = 94.2807616}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 96 и 46 равна 45.1761983
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 96 и 46 равна 38.0431143
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 96 и 46 равна 94.2807616
Ссылка на результат
?n1=114&n2=96&n3=46
Найти высоту треугольника со сторонами 91, 87 и 18
Найти высоту треугольника со сторонами 68, 62 и 32
Найти высоту треугольника со сторонами 114, 109 и 24
Найти высоту треугольника со сторонами 58, 34 и 29
Найти высоту треугольника со сторонами 80, 61 и 40
Найти высоту треугольника со сторонами 138, 130 и 33
Найти высоту треугольника со сторонами 68, 62 и 32
Найти высоту треугольника со сторонами 114, 109 и 24
Найти высоту треугольника со сторонами 58, 34 и 29
Найти высоту треугольника со сторонами 80, 61 и 40
Найти высоту треугольника со сторонами 138, 130 и 33