Рассчитать высоту треугольника со сторонами 115, 101 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 101 + 78}{2}} \normalsize = 147}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147(147-115)(147-101)(147-78)}}{101}\normalsize = 76.5148515}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147(147-115)(147-101)(147-78)}}{115}\normalsize = 67.2}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147(147-115)(147-101)(147-78)}}{78}\normalsize = 99.0769231}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 101 и 78 равна 76.5148515
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 101 и 78 равна 67.2
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 101 и 78 равна 99.0769231
Ссылка на результат
?n1=115&n2=101&n3=78
Найти высоту треугольника со сторонами 104, 83 и 30
Найти высоту треугольника со сторонами 118, 94 и 73
Найти высоту треугольника со сторонами 93, 61 и 33
Найти высоту треугольника со сторонами 85, 77 и 37
Найти высоту треугольника со сторонами 41, 37 и 10
Найти высоту треугольника со сторонами 143, 126 и 95
Найти высоту треугольника со сторонами 118, 94 и 73
Найти высоту треугольника со сторонами 93, 61 и 33
Найти высоту треугольника со сторонами 85, 77 и 37
Найти высоту треугольника со сторонами 41, 37 и 10
Найти высоту треугольника со сторонами 143, 126 и 95