Рассчитать высоту треугольника со сторонами 115, 103 и 25

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 103 + 25}{2}} \normalsize = 121.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121.5(121.5-115)(121.5-103)(121.5-25)}}{103}\normalsize = 23.056167}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121.5(121.5-115)(121.5-103)(121.5-25)}}{115}\normalsize = 20.6503061}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121.5(121.5-115)(121.5-103)(121.5-25)}}{25}\normalsize = 94.991408}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 103 и 25 равна 23.056167
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 103 и 25 равна 20.6503061
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 103 и 25 равна 94.991408
Ссылка на результат
?n1=115&n2=103&n3=25