Рассчитать высоту треугольника со сторонами 115, 103 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 103 + 86}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-115)(152-103)(152-86)}}{103}\normalsize = 82.8105053}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-115)(152-103)(152-86)}}{115}\normalsize = 74.1694091}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-115)(152-103)(152-86)}}{86}\normalsize = 99.1800238}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 103 и 86 равна 82.8105053
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 103 и 86 равна 74.1694091
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 103 и 86 равна 99.1800238
Ссылка на результат
?n1=115&n2=103&n3=86
Найти высоту треугольника со сторонами 90, 73 и 41
Найти высоту треугольника со сторонами 127, 70 и 60
Найти высоту треугольника со сторонами 83, 52 и 33
Найти высоту треугольника со сторонами 111, 104 и 40
Найти высоту треугольника со сторонами 118, 72 и 70
Найти высоту треугольника со сторонами 95, 83 и 37
Найти высоту треугольника со сторонами 127, 70 и 60
Найти высоту треугольника со сторонами 83, 52 и 33
Найти высоту треугольника со сторонами 111, 104 и 40
Найти высоту треугольника со сторонами 118, 72 и 70
Найти высоту треугольника со сторонами 95, 83 и 37