Рассчитать высоту треугольника со сторонами 115, 106 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 106 + 74}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-115)(147.5-106)(147.5-74)}}{106}\normalsize = 72.1488709}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-115)(147.5-106)(147.5-74)}}{115}\normalsize = 66.5024375}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-115)(147.5-106)(147.5-74)}}{74}\normalsize = 103.348383}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 106 и 74 равна 72.1488709
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 106 и 74 равна 66.5024375
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 106 и 74 равна 103.348383
Ссылка на результат
?n1=115&n2=106&n3=74
Найти высоту треугольника со сторонами 46, 41 и 16
Найти высоту треугольника со сторонами 67, 62 и 13
Найти высоту треугольника со сторонами 135, 110 и 108
Найти высоту треугольника со сторонами 93, 67 и 56
Найти высоту треугольника со сторонами 144, 136 и 47
Найти высоту треугольника со сторонами 117, 100 и 28
Найти высоту треугольника со сторонами 67, 62 и 13
Найти высоту треугольника со сторонами 135, 110 и 108
Найти высоту треугольника со сторонами 93, 67 и 56
Найти высоту треугольника со сторонами 144, 136 и 47
Найти высоту треугольника со сторонами 117, 100 и 28