Рассчитать высоту треугольника со сторонами 115, 107 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 107 + 35}{2}} \normalsize = 128.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128.5(128.5-115)(128.5-107)(128.5-35)}}{107}\normalsize = 34.9051655}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128.5(128.5-115)(128.5-107)(128.5-35)}}{115}\normalsize = 32.4769801}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128.5(128.5-115)(128.5-107)(128.5-35)}}{35}\normalsize = 106.710077}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 107 и 35 равна 34.9051655
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 107 и 35 равна 32.4769801
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 107 и 35 равна 106.710077
Ссылка на результат
?n1=115&n2=107&n3=35
Найти высоту треугольника со сторонами 130, 84 и 65
Найти высоту треугольника со сторонами 99, 75 и 46
Найти высоту треугольника со сторонами 105, 88 и 64
Найти высоту треугольника со сторонами 140, 107 и 88
Найти высоту треугольника со сторонами 46, 40 и 36
Найти высоту треугольника со сторонами 72, 66 и 26
Найти высоту треугольника со сторонами 99, 75 и 46
Найти высоту треугольника со сторонами 105, 88 и 64
Найти высоту треугольника со сторонами 140, 107 и 88
Найти высоту треугольника со сторонами 46, 40 и 36
Найти высоту треугольника со сторонами 72, 66 и 26