Рассчитать высоту треугольника со сторонами 115, 107 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 107 + 40}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-115)(131-107)(131-40)}}{107}\normalsize = 39.9915442}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-115)(131-107)(131-40)}}{115}\normalsize = 37.2095238}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-115)(131-107)(131-40)}}{40}\normalsize = 106.977381}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 107 и 40 равна 39.9915442
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 107 и 40 равна 37.2095238
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 107 и 40 равна 106.977381
Ссылка на результат
?n1=115&n2=107&n3=40
Найти высоту треугольника со сторонами 138, 118 и 81
Найти высоту треугольника со сторонами 144, 139 и 138
Найти высоту треугольника со сторонами 122, 91 и 63
Найти высоту треугольника со сторонами 129, 111 и 33
Найти высоту треугольника со сторонами 123, 87 и 87
Найти высоту треугольника со сторонами 112, 96 и 27
Найти высоту треугольника со сторонами 144, 139 и 138
Найти высоту треугольника со сторонами 122, 91 и 63
Найти высоту треугольника со сторонами 129, 111 и 33
Найти высоту треугольника со сторонами 123, 87 и 87
Найти высоту треугольника со сторонами 112, 96 и 27