Рассчитать высоту треугольника со сторонами 115, 107 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 107 + 46}{2}} \normalsize = 134}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134(134-115)(134-107)(134-46)}}{107}\normalsize = 45.9725544}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134(134-115)(134-107)(134-46)}}{115}\normalsize = 42.7744637}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134(134-115)(134-107)(134-46)}}{46}\normalsize = 106.936159}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 107 и 46 равна 45.9725544
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 107 и 46 равна 42.7744637
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 107 и 46 равна 106.936159
Ссылка на результат
?n1=115&n2=107&n3=46
Найти высоту треугольника со сторонами 112, 64 и 51
Найти высоту треугольника со сторонами 98, 97 и 16
Найти высоту треугольника со сторонами 100, 75 и 30
Найти высоту треугольника со сторонами 96, 66 и 56
Найти высоту треугольника со сторонами 133, 110 и 63
Найти высоту треугольника со сторонами 95, 69 и 35
Найти высоту треугольника со сторонами 98, 97 и 16
Найти высоту треугольника со сторонами 100, 75 и 30
Найти высоту треугольника со сторонами 96, 66 и 56
Найти высоту треугольника со сторонами 133, 110 и 63
Найти высоту треугольника со сторонами 95, 69 и 35