Рассчитать высоту треугольника со сторонами 115, 107 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 107 + 84}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-115)(153-107)(153-84)}}{107}\normalsize = 80.2947579}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-115)(153-107)(153-84)}}{115}\normalsize = 74.7090356}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-115)(153-107)(153-84)}}{84}\normalsize = 102.280227}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 107 и 84 равна 80.2947579
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 107 и 84 равна 74.7090356
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 107 и 84 равна 102.280227
Ссылка на результат
?n1=115&n2=107&n3=84
Найти высоту треугольника со сторонами 134, 129 и 18
Найти высоту треугольника со сторонами 71, 48 и 35
Найти высоту треугольника со сторонами 112, 64 и 52
Найти высоту треугольника со сторонами 104, 78 и 60
Найти высоту треугольника со сторонами 104, 101 и 100
Найти высоту треугольника со сторонами 145, 139 и 21
Найти высоту треугольника со сторонами 71, 48 и 35
Найти высоту треугольника со сторонами 112, 64 и 52
Найти высоту треугольника со сторонами 104, 78 и 60
Найти высоту треугольника со сторонами 104, 101 и 100
Найти высоту треугольника со сторонами 145, 139 и 21