Рассчитать высоту треугольника со сторонами 115, 108 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{115 + 108 + 54}{2}} \normalsize = 138.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138.5(138.5-115)(138.5-108)(138.5-54)}}{108}\normalsize = 53.6343883}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138.5(138.5-115)(138.5-108)(138.5-54)}}{115}\normalsize = 50.3696864}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138.5(138.5-115)(138.5-108)(138.5-54)}}{54}\normalsize = 107.268777}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 115, 108 и 54 равна 53.6343883
Высота треугольника опущенная с вершины A на сторону BC со сторонами 115, 108 и 54 равна 50.3696864
Высота треугольника опущенная с вершины C на сторону AB со сторонами 115, 108 и 54 равна 107.268777
Ссылка на результат
?n1=115&n2=108&n3=54
Найти высоту треугольника со сторонами 135, 89 и 71
Найти высоту треугольника со сторонами 141, 96 и 70
Найти высоту треугольника со сторонами 146, 112 и 65
Найти высоту треугольника со сторонами 90, 87 и 69
Найти высоту треугольника со сторонами 145, 101 и 51
Найти высоту треугольника со сторонами 135, 88 и 86
Найти высоту треугольника со сторонами 141, 96 и 70
Найти высоту треугольника со сторонами 146, 112 и 65
Найти высоту треугольника со сторонами 90, 87 и 69
Найти высоту треугольника со сторонами 145, 101 и 51
Найти высоту треугольника со сторонами 135, 88 и 86